v

i PRODUCT ION
GRADE
BASH

COMMAND
LIME SCRIPTS

HEROES KUMAR ASHWIN

S whoami

Lead Research & Consulting / Security
Engineering at RedHunt Labs

I’'ve been a speaker/trainer at BlackHat,
Nullcon, c@OcOn, etc.

My work sits at the intersection of code,
and security - Offensive + Defensive -
mostly in AI Security (obviously) & Supply
Chain Security.

Loves to travel across the world when I am
not writing bash scripts.

I also do Internet Scanning for Fun &
Profit.

me @ 5am today
finishing these slides

)

What do you mean by
production grade bash scripts???

Once upon a time..

be like alex!!

Alex

Intern - DevOps

Love creating bash scripts and drinking
matcha and playing Pickleball!

because it worked!

next morning...

On-Call Engineer’s Thoughts

did we get hacked?

did our server go down?

————

e -

is life a joke? o e -
S e e - - -"am i dumb?

e - -

is AWS down?

what caused this?

where is the log file?

let’'s the debugging games begin!!

there are no logs!!!

cleanup.sh

echo "Cleanup Completed Successfully! @ " > /tmp/log

logging to a file

If something breaks, the log should know before you do.

Instead of manually redirecting each command’s output, you can route
everything with a single line:

cleanup.sh

exec > >(tee -a "S$LOG_FILE" | logger -t tag-name -s) 2>&1

It works at the script level, so every line - every error, every echo -
gets captured. Perfect for debugging, postmortems, or just knowing what

actually happened.

what really makes a good log line?

e No spaces between fields - use a delimiter

e Consistent key=value pairs for structured data

e Fixed field order (timestamp, level, then data)

e Unique and searchable field names (e.g., user_id, not just id)
e Machine readability first, human readability second

e No unstructured errors - wrap them with context (reason=timeout
instead of “it broke”)

e Avoid redundancy - don’t repeat info like the timestamp or log level
already shows

add more structure to the log

cleanup.sh log
LOG_FILE="./script.log" 2025-04-16T13:37:00+0000: :: [INFO]:::event=task_start,user_id=123, task_id=456
2025-04-16T13:37:01+0000: :: [ERROR] : : :event=file_open_failed, file=config.json, reason=NoSuchFile
log() {
local level="$1"
shift
local ts

ts="S$(date '+%XY-Xm-XdTHH:%M:%S%z')"
local fields="$x"
local message="$ts:::$level:::$fields"

¥ Color-coded terminal output

case "Slevel" in
ERROR) echo -e "\033[0;31m$message\833[0m" >8&2 ;;
WARN) echo -e "\0833(0;33m$message\033[0m" >&2 ;;
*) echo "$message" >&2 ;;

esac

Log to file

echo "$message" >> "S$LOG_FILE"

variables were not quoted! ﬁ\\@}‘
NS 78

T —

cleanup.sh

#! fusr/bin/env bash

DB_BACKUP_DIR="db dumps"
DB_DIR="postgresql/data"

TARGET_DIR=$DB_BACKUP_DIR

echo "Cleaning old database backups from $TARGET_DIR"
rm -rf $TARGET_DIR/*

quoting variables

rm -rf STARGET_DIR/*

TARGET_DIR="db dumps", this becomes:

rm -rf db dumps/*

And now you’'ve run two separate
commands:

rm -rf db
rm -rf dumps/*

The fix is simple:

cleanup.sh

TARGET_DIR="db dumps"
rm -rf "$TARGET_DIR"/x

no dependency check!

cleanup.sh

PG_CTL="/usr/bin/pg_ctl_default"

$PG_CTL stop -D "$DB_DIR" -m fast 2=fdev/null || echo "[WARN] pg_ctl failed (ignored)"

echo "Remove DB Dumps, as backup 1s complete!"”

check for dependency

cleanup.sh

require() {
command -v "$1" >/dev/null 2>8&1 || {
echo "Missing dependency: $1" >&2
exit 1

require pg_ctl_default

it still fails silently!

cleanup.sh

BACKUP=". fvarfbackups/postgres/backup today.tar.gz"
DBE_DIR="./var/lib/postgresql/12/main"

TARGT=$BACKUP

echo "[INFO] Attempting graceful DB stop (best-effort)..."
pg_ctl stop -D "$DB_DIR" -m fast 2>/dev/null || echo "[WARN] pg_ctl stop failed (ignored)"

echo "[INFO] Running backup integrity pipeline: gzip -t SBACKUP | awk 'END{print \"ok\"}'"
gzip -t $BACKUP | awk 'END{print “"ok"}'

echo "[INFO] Pipeline exit status (reported): %?"

Use Strict Mode

Shell doesn’t assume anything is dangerous. You probably should.

Strict mode gives you a safety net:
set -euo pipefail
-e: Exit immediately if any command fails

-u: Error on using unset variables

-0 pipefail: Fail if any command in a pipeline fails

now, let’'s talk some other practices!

add a debug mode

Sometimes you want to see everything. Sometimes you don’t.

A debug mode lets you toggle verbose output without editing
your script every time.

add a progress loader

Because silence feels like failure.

Long-running commands can make users wonder if the script
hung or crashed. A simple loader adds just enough feedback to
show that something’'s happening without cluttering the
terminal.

It’s a small UX upgrade, especially in scripts that handle
provisioning, backups, or large data transfers.

No output doesn’t have to mean no activity.

create a resumable script

cleanup.sh

if [! -f /tmp/setup.stepl.done]; then

Because rerunning the whole
echo "Running step 1..."

thing shouldn’t feel like
starting over.

} some long-running command
touch /tmp/setup.stepl.done
fi

If your script processes a long input file - say, a list of hosts or
user IDs - resumability means not starting from the top again.
Instead of deleting lines from the input file, a cleaner pattern is
to track progress in a separate file.

clean up after your mess - use Trap

Because your script should clean up after itself, even when it crashes.

If your script creates temporary files, background jobs, or mounts
anything, it should also clean up - no matter how it exits. That’'s where
trap comes 1in.

The builtin lets you register a clean-up function that runs on
, , or

Trap isn’'t just for temp files. Use it to:

e Kill background jobs
e Unmount things

e Stop services

e Log exit status

add meaning to your exits

Because not all failures are created equal.

Every script exits with a status code. By default, © means success,
and anything else means failure. But if you’'re building scripts for
automation, chaining, or CI/CD, you should make exit codes
meaningful.

cleanup.sh

Instead of a generic exit 1,

define what each failure means: EXIT_OK=0
EXIT_USAGE=64
EXIT_DEPENDENCY=65

EXIT_RUNTIME=66

feeling cheated?

krash.dev Categories Tags Archive @

Production Grade Bash Scripts

A deep dive into writing resilient, production-grade sheld scripts, because sometimes your one-iner ends up

krash.dev/posts/writing-production-grade-bash-script/

https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/

tThank ygyout

you can find me at
Eumarashwin. Ccom

http://kumarashwin.com

	Slide 1: PRODUCTION GRADE BASH SCRIPTS
	Slide 2: $ whoami
	Slide 3: What do you mean by production grade bash scripts???
	Slide 4: Once upon a time…
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: let’s the debugging games begin!!
	Slide 10: there are no logs!!!
	Slide 11: logging to a file
	Slide 12: what really makes a good log line?
	Slide 13: add more structure to the log
	Slide 14: variables were not quoted!
	Slide 15: quoting variables
	Slide 16: no dependency check!
	Slide 17: check for dependency
	Slide 18: it still fails silently!
	Slide 19: Use Strict Mode
	Slide 20: now, let’s talk some other practices!
	Slide 21: add a debug mode
	Slide 22: add a progress loader
	Slide 23: create a resumable script
	Slide 24: clean up after your mess - use Trap
	Slide 25: add meaning to your exits
	Slide 26: feeling cheated?
	Slide 27: krash.dev/posts/writing-production-grade-bash-script/
	Slide 28: thank you!

