
PRODUCTION
GRADE
BASH
SCRIPTS

KUMAR ASHWIN

$ whoami

Lead Research & Consulting / Security
Engineering at RedHunt Labs

I’ve been a speaker/trainer at BlackHat,
Nullcon, c0c0n, etc.

My work sits at the intersection of code,
and security - Offensive + Defensive -
mostly in AI Security (obviously) & Supply
Chain Security.

Loves to travel across the world when I am
not writing bash scripts.

I also do Internet Scanning for Fun &
Profit.

me @ 5am today
finishing these slides
:)

What do you mean by
production grade bash scripts???

Once upon a time…

Alex

Intern - DevOps

Love creating bash scripts and drinking
matcha and playing Pickleball!

be like alex!!

because it worked!

next morning...

did we get hacked?

did our server go down?

is life a joke?

is this the correct
grammar?

am i dumb?

where is the log file?

what caused this?

On-Call Engineer’s Thoughts

is AWS down?

let’s the debugging games begin!!

there are no logs!!!

logging to a file

If something breaks, the log should know before you do.

Instead of manually redirecting each command’s output, you can route
everything with a single line:

It works at the script level, so every line - every error, every echo -
gets captured. Perfect for debugging, postmortems, or just knowing what
actually happened.

what really makes a good log line?

● No spaces between fields - use a delimiter

● Consistent key=value pairs for structured data

● Fixed field order (timestamp, level, then data)

● Unique and searchable field names (e.g., user_id, not just id)

● Machine readability first, human readability second

● No unstructured errors - wrap them with context (reason=timeout
instead of “it broke”)

● Avoid redundancy - don’t repeat info like the timestamp or log level
already shows

add more structure to the log

variables were not quoted!

quoting variables

rm -rf $TARGET_DIR/*

TARGET_DIR="db dumps", this becomes:

rm -rf db dumps/*

And now you’ve run two separate
commands:

rm -rf db
rm -rf dumps/*

The fix is simple:

no dependency check!

check for dependency

it still fails silently!

Use Strict Mode

Shell doesn’t assume anything is dangerous. You probably should.

Strict mode gives you a safety net:

set -euo pipefail

-e: Exit immediately if any command fails

-u: Error on using unset variables

-o pipefail: Fail if any command in a pipeline fails

now, let’s talk some other practices!

add a debug mode

Sometimes you want to see everything. Sometimes you don’t.

A debug mode lets you toggle verbose output without editing
your script every time.

add a progress loader

Because silence feels like failure.

Long-running commands can make users wonder if the script
hung or crashed. A simple loader adds just enough feedback to
show that something’s happening without cluttering the
terminal.

It’s a small UX upgrade, especially in scripts that handle
provisioning, backups, or large data transfers.

No output doesn’t have to mean no activity.

create a resumable script

If your script processes a long input file - say, a list of hosts or
user IDs - resumability means not starting from the top again.
Instead of deleting lines from the input file, a cleaner pattern is
to track progress in a separate file.

Because rerunning the whole
thing shouldn’t feel like
starting over.

clean up after your mess - use Trap

Because your script should clean up after itself, even when it crashes.

If your script creates temporary files, background jobs, or mounts
anything, it should also clean up - no matter how it exits. That’s where
trap comes in.

The trap builtin lets you register a clean-up function that runs on
EXIT, INT, or ERR.

Trap isn’t just for temp files. Use it to:

● Kill background jobs
● Unmount things
● Stop services
● Log exit status

add meaning to your exits

Because not all failures are created equal.

Every script exits with a status code. By default, 0 means success,
and anything else means failure. But if you’re building scripts for
automation, chaining, or CI/CD, you should make exit codes
meaningful.

Instead of a generic exit 1,

define what each failure means:

feeling cheated?

krash.dev/posts/writing-production-grade-bash-script/

https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/
https://www.krash.dev/posts/writing-production-grade-bash-script/

thank you!

you can find me at
kumarashwin.com

http://kumarashwin.com

	Slide 1: PRODUCTION GRADE BASH SCRIPTS
	Slide 2: $ whoami
	Slide 3: What do you mean by production grade bash scripts???
	Slide 4: Once upon a time…
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: let’s the debugging games begin!!
	Slide 10: there are no logs!!!
	Slide 11: logging to a file
	Slide 12: what really makes a good log line?
	Slide 13: add more structure to the log
	Slide 14: variables were not quoted!
	Slide 15: quoting variables
	Slide 16: no dependency check!
	Slide 17: check for dependency
	Slide 18: it still fails silently!
	Slide 19: Use Strict Mode
	Slide 20: now, let’s talk some other practices!
	Slide 21: add a debug mode
	Slide 22: add a progress loader
	Slide 23: create a resumable script
	Slide 24: clean up after your mess - use Trap
	Slide 25: add meaning to your exits
	Slide 26: feeling cheated?
	Slide 27: krash.dev/posts/writing-production-grade-bash-script/
	Slide 28: thank you!

